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J. Chem. Phys., in press

Quantum Dynamical Model of Laser-Stimulated
Isotope Separation of Adsorbed Species:
Role of Anharmonicity, Coupling Strength and

Energy Feedback from the Heated Substrate

Jui-teng Lin®and Thomas F. George
Department of Chemistry, University of Rochester
Rochester, New York 14627 U.S.A.

A quantum model of a heterogeneous system consisting of a
mixture of isotopes adsorbed on a solid surface and subjected
to laser radiation is presented. The model system is described
by a total Hamiltonian including direct and indirect (surface-
phonon-mediated) couplings. The equations of motion are derived
in the Heisenberg-Markoffian picture in which the many-body
effects of the surface phonon modes and the adspecies are
reduced to an overall broadening (damping factor) given by the
sum of the energy (Tl) and phase (Tz) relaxations. The effects
of the dephasing and anharmonicity on the average excitation
are investigated. The "bistability" feature with a red-shifted
optimal detuning is discussed in terms of the solution of a
cubic equation. A diagonalization procedure is presented in a

new basis which reveals the effects of the coupling-strength,

the frequency difference and the level width of the isotopes on
the total steady-state excitation, which in turn reflects the
surface spectrum of the model system. Finally, the isotope
selectivity given by the numerical results of the time~integrated
excitations is discussed. It is shown that the optimal detuning
for a weak coupling strength is further red-shifted for a strong

isotopic coupling strength. Finally, energy feedback effects of

the bath modes on the excitations of the active modes are investi-
gated by combining a quantum excitation equation and a classical
heat diffusion equation.
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I. Introduction

Infrared multiphoton processes for the separation of isotopes
in the gas phase have been widely studied both experimentally and
theoretically in the past several years.1 For a homogeneous gas-
phase system, the selective separation of the isotopes is mainly
characterized by the frequency difference of the isotopes resulting
in different cross sections, and the coupling strength among the
excited isotopes is governed by the gas pressure and concentrations
of the species. For a heterogeneous system, e.g., isotopic species
adsorbed on a solid surface, the energy transfer processes governing
the selectivity of the isotope separation are more complicated due
to the many-body effects of the adspecies and the surface/bulk atoms
of the solid. 1Instead of pressure-induced collisions among the iso-
topes as in a homogeneous system, different interaction mechanisms
are responsible for the energy transfer among the adspecies in a
heterogeneous system. They include dipole-dipole interactions among
the isotopes adsorbed at different lattice sites, migration-induced
nonradiative interactions/collisions and other direct and indirect
{(surface-mediated) couplings.

For a system consisting of a group of identical adspecies and
subjected to a laser radiation, the selective excitation of the
active modes and/or the active species without significantly heating
up the solid (phonon modes) has been recently studied by Lin et al.2
In the present paper, we make the extension to a mixture of isotopes.
The selectivity of the isotope separation is governed by the para-
meters involved in energy transfer processes such as the energy (Tl)

and phase (T2) relaxation rates, the coupling between the active
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modes of the isotopes, the intra- and intermolecular couplings of
the adspecies, the multiphonon relaxation rates of the active modes
and their frequency difference resulting in different absorption
cross sections.

The present paper is organized as follows. In Section II, a
model system consisting of a group of mixed isotopes and subjected
to laser radiation is described by a total vibrational Hamiltonian
including the direct and indirect interactions among the active
modes, which interact with each other and are coupled to a common
bath comprised of the surface and bulk phonons (and
also the inactive modes of the adspecies). The equations of motion
of the average excitations (number of photons absorbed) are set up
in the Heisenberg-Markoffian picture, and an excitation-dependent
complex frequency resulting from the nonlinearity property of the
excitation process is introduced in Section III. Two important
features are shown in Section IV: (A) the effects of phase (Tz)
relaxation on the time evolution of the average excitation, and
(B) anharmonic effects on the steady-state excitation governed by
a cubic equation, where the "bistability" characterized by a criti-
cal laser intensity and an optimal detuning are calculated exactly.
The rise times of the steady-state excitation for laser frequencies
far from as well as near the optimal detuning are graphically shown
for the numerical solutions of the coupled equations. Anharmonic
effects on the steady-state excitation and the bistability feature
have been discussed in a previous paper,3 but part of that discus-
gsion is repeated here for the sake of completeness. Furthermore,

in the present paper we consider an alternative method, which includes
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the dephasing effects on the transient excitation which were not
calculated previously.3

In Section V, the role of the isotopic coupling strength played
in the total excitation is analyzed, and expressions are derived for
the level broadening (narrowing) and frequency red (blue) shift.
The effects of the isotopic coupling strength, the frequency difference
and the anharmonicity on the selectivity of isotope separation are
investigated by means of numerical results of the time-integrated
excitations in Section VI. Finally, we summarize the main results

in Section VII,

II. Model Hamiltonian

We consider a model system consisting of an isotopic mixture
of species adsorbed on a solid surface and subjected to infrared
radiation with frequency near-resonant to those of the active modes
of the system. The vibrational spectrum of the adspecies/surface
system may be partitioned into a high~frequency region consisting
of the active modes and the inactive modes of the adspecies and a
low-frequency region comprised of the surface and bulk phonon modes.
The latter are not optically active and can only be excited via
multiphonon relaxation of the active modes. 1In addition to the
irreversible energy transfer between the adspecies and the phonon
modes, which presumably form a quasicontinuum, the reversible energy
transfer among the intra- and interspecies bound states also plays
a prime role in laser-stimulated surface processes. For a system
consisting of a single polyatomic (n-atom) adspecies, the intra-

species energy transfer is governed by the anharmonic coupling among
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the 3n "frustrated" normal modes, and therefore the detailed energy
populations in each individual mode involve solving a set of 3n
coupled equations. For a system consisting of two n-atom isotopic
adspecies, one must begin with a set of 6n equations which include
the interactions between the active modes of different isotopes.

The isotopic coupling strength is usually very strong because of the
small frequency difference between the isotopes of interest.

By the concept of the "energy-gap law,"4 we realize that the
interaction strength for a multi-quanta process is relatively weak
compared with that of a single-quantum process. Therefore we shall
factor out the single-quantum coupling, i.e., the interaction between
the active modes of the isotopes, and regard the other all inactive
modes of the adspecies and the phonon modes as a heat bath. By
this factorization procedure, we have ignored the interactions among
the bath modes, although we shall not ignore the bath-mediated coupl-
ing between the active modes. Furthermore, the interspecies cﬁupling
will be effectively accounted for by an ensemble-averaging procedure.

We first consider the simple system depicted by Fig. 1(A4),
which consists of only two interacting isotopic adspecies A and B with

active mode frequencies w, and w respectively, and both coupled

A B’
to a common bath C with frequencies wj. The total vibrational Hamil-

tonian of the system may be written as

Ho=Ht HytHgt Bt e e e (1)

+
AB ACB8 Ac ac

Ho is the separable portion, H and HA are the direct and indirect

AB . CB
(bath-mediated) couplings of the active modes, respectively, HAC and

H represent the irreversible relaxation of the activemodes A and B

BC
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to the bath modes, respectively, and HAF

actions with isotopes A and B, respectively.

and HBF are the laser inter-

The direct excitation of the bath modes, is not included

HCF'
in the above Hamiltonian, since the far off-resonant excitation is
significantly weak compared with that of near-resonant excitation,

i.e., we shall be interested in a laser radiation with frequency

w. and w>> w..

w = w B 3 Furthermore, electronic excitations of the

Al
substrate leading to direct bulk heating are neglected, such as infrared

excitation of adspecies on a semiconductor surface which has very small

absorption coefficient for w=1000~3000 cm-l. We note that the

bath-mediated interaction Hamiltonian, H is primarily governed

ACB’
by the intraspecies inactive modes, since the intramolecular anhar-

monic relaxation (IAR) is usually much faster than that of the phonon
relaxation. [Note that the bath (C) modes consist of the inactive
modes of the adspecies as well as the phonon modes.] Based on the

relative strengths of the pumping rates (VA ), the direct active-

B
’
mode coupling (DAB), the bath-mediated coupling (DACB) and the multi-

phonon relaxation ( ), which are governed respectively by the

PaBC

A,BF’ HAB’ HACB and.HA,BC' we may distinguish several

types of excitations: (i) single-mode (A) selective, for Var>Vge

(ii) active-mode (A and B) selective, for

Hamiltonians H

Dag’ Dacs’
Va *Vp>>Daps Dacp’ Da,mc a2~ Pap>>Vp’ Pacp’ Pa,nc’

group selective (or adspecies selective), for VAz VB: DAB” DACB>>DA,BC'

Da,BC’

or V >>V D (iii) functional-

i.e., selective bond breaking is still possible, even when IAR is
very fast, if the multiphonon relaxation is considerably weak; and

, , . 5
(iv) nonselective thermal heating, for DA,BC“ VA,B' DACB’ Dap*
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We now extend the above model to a system consisting
of a group of isotopic mixtures, which is represented by Fig. 1(B).

Notice that the density of states peaked at w, and w_ are

A B
further broadened compared to those in Fig. 1(A) due to the addi-
tional interspecies interactions. The total Hamiltonian for this

more general system may be written as

’L{z=f”4+Hu+/zs+Hm+%A+st+ Flus » (2)

where Hl is given by Egq.(l), and we have now included the active

mode couplings within the same isotope, HAA and HBB’ as well as the

indirect couplings, Hijk(i,j,k==A,B,C). A more explicit description

of the above model system is provided by the second quantization

representation of the total Hamiltonian. The unperturbed Hamiltonian

for anharmonic isotopes is ‘ s
H, - Z-k(q—zjafa‘.)afa‘- DRICTEA AT LI o

4 J
where each sum runs over all the individual species for a given

isotope (A or B with anharmonicity ei or t¢*, respectively). The

direct interaction Hamiltonians are given by
+ .
= tD ab +1’.C. ..
f%B .2; AB ¢ J P (4.a)
A f
f%d- Zte C;a". +'{.¢., (4.b)
A »

(4.c)
(4.4)

(4.e)




where D and F are the appropriate interaction constants among dif-

ferent modes, Cp =1 c, is a multiphonon operator for a p-phoncn
\Y

process and h.c. stands for the Hermitian conjugate.2 The indirect
interaction Hamiltonians can be represented as

ooty 4 2
H o= LATG CCall + Ze,

ACB 5 b A8 ¥ Y

by (5.a)
’ - » f 7‘ +_{.
fhea = kTG GG a4+ e, 5.5)
H.= Y% K /;’Léa*a+ e.
WaA G MAF g < A (5.c)

with similar expressions for HBCB and HBAB' We note that the appro-

priate indirect coupling constants G and K are constructed by energy
conservation such that no energy is transferred from the A mode to
the bath (C) modes and the B mode, respectively. Finally, the laser

field interaction Hamiltonians are given by

H = ThY emat (af+a)

LS (6.a)
f.
A, = ;t\é ot (b+8),

(6.b)
l/ ’ .
%a = (7"/27’51,36‘%,)2/2,{”)5 g (6.c)

whe . u'(0) is the derivative of the dipole moment of the pumped-

mode evaluated at the equilibrium point, and E is the electric field
of the radiation, assumed to be time-independent, with circular

frequency w and linearly polarized at an angle 8 with respect to
u'(0).
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III. Equations of Motion in the Heisenberg-Markoffian Pictur::

To investigate the energy transfer dynamics, i.e., the time
evolution of the number of photons absorbed by the isotopes accom-~
panied by bath-induced damping, we shall first set up the equations
of motion which involve the many-body effects resulting from both
the active modes and the bath modes. For a group of isotopic ad-
species subjected to laser radiation, a physical measurement would
deal with an ensemble-averaged quantity over both the active and

the bath modes ocoordinates, e.g., the average excitations of the

isotopes (photon absorbed per adspecies). Assuming there are ny
and ng adspecies for isotopes A and B, respectively, then we shall
be interested in the average excitations defined by

!

<N.> = <<2aTa.>>/n and <N_> = <<Ib

.‘-
A 57373 A B j

<<s+++>> denotes the ensemble average (or trace) over both the active

bj>>/nB, where the double bracket

and bath modes. The many-body effects due to the coupling between
the active and bath modes may be reduced to damping factors either
by the Wigner-Weisskopff approximation (WWA) or by the Markoffian

6 To utilize WWA, one would first take the Laplace

approximation.
transform of the equations of motion and use the so-called "single-
pole" approximation to reduce the many-body effects governed by a
summation over the bath modes. Here, we shall use the latter approach
and set up the equations of motion in the Heisenberg-Markoffian

picture (HMP). 1In HMP no memory effects are retained, which assumes that
the correlation time of the bath modes is much shorter than the

energy damping time of the active modes such that energy going into

the bath will not return to the active modes. The significance of the
energy feedback effects on excitations of the active modes will be

discussed in Section VII.
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Picturing the system in HMP, the equations of motion for
the ensemble-averaged excitations of isotopes A and B, denoted
by <NA> and <NB>, respectively, can be represented as the following
set of coupled nonlinear equations derived with the help of Kubo's

cumulant expansion:z's'7

—- A - - —_ =
‘A= QA+ el + 988’ 7.2

J (7.b)

., - -F - — ot t=
iNgy= Y cmt (AR ) — 5, (AB-ABY - TN >-5,2), (79
ant(ét3>+ Dg<A -Z%}-AT,'B((A‘/Q-??‘:&), (7.4)

) ) )B ) (7.e)

A, ’ 2 P4 (7- f)

- _ — = (7.9)
ﬂc = [W(twc/"") -1 ] R

Here we have used the ensemble-averaged quantities <Ia;> /nA==X,

— = 1
j> /(nAnB)~ DABA B, etc.

+ Jpg—
<§aiVA> /nA~VAA, {Z.DABaib
1 1,3

We note that the ensemble -averaged operators of different active modes
are assumed to be uncorrelated, i.e., <a+b>=<a+><b>, since the average
quantity <...> over the bath-mode coordinates remains an operator in

the active~mode coordinates, and their correlation via the surface-induced
random force, which is assumed to be a "white" noise, is negligible. We
also assume the bath modes to be in thermal equilibrium, and hence the

mean occupation number of the bath mode, n_, is constant. [The transient
behavior with a time-dependent.ﬁc caused by substrate heating will be

4
discussed in Section VII.] Moreover, we have used the ansatz (aaa):(a*a}(a),etc
The important
/\features of the above equations of motion are: (i) The active modes
of the mixed isotopes, with average excitations <NA,B>' are pumped
by laser radiation via VA B and relax to a common bath via the multi-
’

phonon (Tl) energy damping factor Y?'B, where the energy fluctuation

v
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of the bath modes is given by the Bose-Einstein distribution ﬁe with

a mean frequency Bc and evaluated at the surface temperature T;

(ii) The reversible energy transfer between the active modes A and
B is governed by the mean isotope coupling strength EAB [note that
the second terms in Eq.(7.c) and in Eq.(7.d) have opposite signs];

(iii) The coupled equations for the excitations <NA> and <Ng> are

highly nonlinear due to the excitation-dependent effective frequency

:fg(t) which is complex and time-dependent. [The surface-induced

frequency shift of Wa B is ignored in Eq.(7.e).] The total width,
’

i.e., the imaginary part of wzég, is given by the superposition of

the energy (Tl) relaxation factor Y?’B and the phase (Tz) relaxation

factor y‘; B. While Y?'B arises mainly fram the direct interaction part of the

Hamiltonian, H and H the dephasing factor yg’B is mainly due

AC BC’
to the indirect interactions such as HAA' HBB' HACA’ etc. [For an

explicit expression of FA B’ we refer the reader to Ref. 2.]
r

(iv) In the absence of interisotopic coupling, BAB==°' active modes

A and B are noninteracting and the difference of the excitations

<NA>- <NB> will be characterized only by the frequency difference
A B e T =T . . — 5 -
Wogg™ weff’ if VA"VBf (v) in the apsence of laser radiation, VAB o,

the steady-state total excitation <NA>+-<NB> 00es to the thermal

equilibrium. value ﬁé as expected from the sum of Egs.(7.¢) and (7.4).

The above coupled equations can also be set up by a phenomen-

A
ological approach, where active-mode operator 0 = at a or afa obeys

the equation
3 d«ZO»a_[( 45)« >+ T fao - _4( Q»,/c]
r R /2) 74 Maaf)} { ) (8)

— . o
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This dephasing term is mathematically constructed such that for

6= a’ and afa,
day _ A, H
T2 =T 42}, (9.a)

«
f
«4‘9‘5> =9, (9.b)

that is,

(2, Tk, 0151 1)
2

This assures that the dephasing (Tz) process changes only the
phase of the pumped-mode ([see Egs.(7a) and (7.b)] without changing
its excitations. We note that, in Egs.(7.d) and (7.e), the exci-
tations are damped by y?’B only, with no contribution from Yg'B.
Because of the rapidly oscillating optical frequency,

13

w ~ 107°Hz, the size of the time step necessary to follow the evolu-

14 sec, which implies

tion of the excitations will be as small as 10
105 steps to generate the time-dependent excitation profile up to

the range of a nanosecond. A way to overcome this difficulty is

that, instead of following the optical frequency, one may use the
rotating-wave approximation (RWA) which discards the highly oscil-~
latory terms [exp(:2iwt)]. In this way one works on the time-scale
given by the inverse of the detuning, which is in the range of several
nanoseconds for a detuning of several cm-l. For this purpose, we
introduce the transforms

Ad)= Aty trp (i t)

{ll.a)

B &)= Se) wp (iwt) (11.b)
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and employing RWA, we simplify Eq.(7) to

A =(w:fw-w)A +VY 2 +D,8,

(12.a)
. B "7 ~
(B=(Wpu-w0)B +Valza+ DA
8 (eif"o> tWB2t Dgh, (12.b)
(No>== 1, TnA - 25, T (ABh - AN, | 12.0)
(’:b"‘\-/a IB+2R, I (AB+) = TN (12.9)

Im denotes the imaginary part, and we have ignored the bath-mode
occupation number ﬁé by assuming an initially cold surface and that

coherent laser excitation dominates over incoherent thermal effects.

IV. Average Excitation

The equations of motion in Eq.(12), which are nonlinear due
to the excitation-dependent effective frequency wA f(t), are in
general not analytically solvable, particularly for the case of
high excitation and strong isotopic coupling in which perturbation
-theory breaks down. Exact numerical solutions for the excitation
will be presented in the next section, but before that we shall

investigate some simpler limiting cases below.

(A) Time-Dependent Excitation - Dephasing Effects

For EA B = EAB = 0, Egq.(12) can be solved exactly to give the

time~-dependent average excitation of the active mode A (and a simi-

lar expression for the active mode B since A and B are noninteracting):

<NA&)>= X1 {1""‘?('\'?{7)* (‘;AF/G)/(T-‘Z*A:)}, (13.a)

ET N




\-//2-)1([;/7"‘)/[&2*(["/2)2] , (13.b)

X =
F=(2A*TT')[ 'At r’t/z (f)J —21 AAe‘As'"@Bf)(B c)

= A -
=7, ");A)/z » Q= (13.4)

Setting the dephasing factor Yg'equal to zero, we can further reduce

the solution to the 51mple form

(N&)> X {1 + e ' r’ /2 (Adt)§ > (14.a)
X = (‘74\/2)2/[ 8y + ”;A/Z)z] . (14.b)

We note that xl and X, are the steady-state solutions (t-+x) for

2
yg # 0 and Yg = 0, respectively. This expression can also be

obtained by solving Eq.(12.a) with e} = BAB = 0 to get

Abr = [(\Z/z)/(-dkﬁt"‘/z)J‘[”‘P(‘iAAt‘ﬂAt/z)" ’] , (15

and the average excitation is then <NA(t)> = |A(t)lz, provided Yg
equals zero.

To demonstrate the effects of Y?, Yg and AA on the excitation,
in Fig. 2 we plot the three-dimensional excitation profiles in the
(y?,t,<NA>) space. Part (A) slows the excitation profile according
to Eq.(14), in which the simple exponential decay in time is governed
by the damping factor Y? and the oscillatory behavior results from

the detuning AA # 0. ([The excitation profile for Y§==0 was shown

previously,3 but for comparison purposes we show it again here,

st o

[
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except that now the plot is a function of (VA/Z)2 instea§ of the
laser intensity.] Parts (B) - (D), which are significan:;§:¥;om
Part (A), show the excitation profiles including the dephasing

effects, i.e., Y? # 0. It is seen that Yg not only affects the

steady-state excitation solution X; ( :XZY?/F for AA<<yi), but

A’
also changes the transient excitation profiles [see Parts (E) and
(F)]. For an alternative picture of the dephasing effects on the
average excitation, we plot ths time evolution of <NA(t)> alone in
Fig. 3 for various values of Yg and Y?, such that'y? +'Y§ is con-
stant. It is seen that the average excitation oscillates between
the envelopes of [1+-exp(—Y?t)] and (1- exp(-Y?t)] for the case of
Y§==0 [Part (A)], while it exponentially increases by [l-exp(—Y?t)]

for the case of large Yg [Part (C)].

(B) Steady-State Excitation ~ Anharmonic Effects

We now consider anharmonic effects by removing the assumption

that ei B is zero (but still setting EA B equal to zero). For the
14 ’

limiting case of steady-state excitation, Eq.(12) results in a cubic

equation for <N,> (and similarly for <NB>):

A ,
3 AV [(AV, (Dvly - (Cy PP
X-(E*)X *[(zg)*(ﬁ)]x (33)(4_27 0, e
where X = <NA> and the subscript A has been dropped, i.e., AA = 4,

ei = ¢*, etc. The behavior of X is nonlinear with respect to 72
and exhibits a "bistability" with respect to 4. Moreover, the
optimal detuning A* is red~shifted with respect to that of the
harmonic case (A*=0), which may be seen be rewriting the cubic

equation as
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X K= (T4 () [ (a-ax)+ (PaF],  an

which upon differentiation and substitution for V from Eq. (16)

co T e T BT

yields

X _ -2X(a-2¢'X)
a8 g-4e'Xa+3(8X)+(rs)

. (18)

The optimal detuning then occurs at the maximum (dX/dA = 0) and

is given by A* = 2e¢*X* (note - the single asterisk which was

already attached to ¢ does not signify an optional condition as

it does for A and X). At the other extreme where dX/4dA +«, we
obtain a gquadratic equation for the detuning, whose two roots

- correspond to a "bistability" in X as a function of A. By equating
the two roots, we obtain the critical pumping rate IVI2 = IV*l2

= ylrz/(ze*), implying that the existence of the bistability is

a consequence of the condition V >V*., For a fixed laser intensity,

which is proportional to 72

(or the pumping rate), the bistability
criterion may also be stated in terms of the anharmonicity as

gE* >e** = (Y1/2)(P/V). This "bistability"” feature of the steady-

state excitation is shown in Fig. 4. It is seen that when the
anharmonicity e* is larger than the critical value, e**, the exci-
tation profile shows the bistable transition from P to Q

as the detuning increases, and from R to S as the

detuning decreases. We note that :he maximum excitation is red-

shifted to A* > 0, which is a general property of any nonlinear

oscillator with ¢*> 0. A classical analogy of this nonlinear

quantum oscillator has been known for some time.8
We now investigate another interesting feature of the nonlinear

excitation, namely, the rise time of the steady-state excitation
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which, to the best of our knowledge, has not been reported in

the literature. For this purpose, the time-dependent excitation
with EAB=O and e£= 0 has been numerically solved. Various

rise times of the steady-state excitation are shown in Fig. 5,
corresponding to different points along the excitation profile
(A) in Fig. 4. 1In Part (A), the time-dependent

excitations with short rise times [” 0.2 Q/Y?)I are shown for the
portion of the profile far from the optimal detuning A*. The
excitations with long rise times [5 to 40(1/Y?5]for the portion
near the optimal value A*= 8.0 are shown in Part(B). The important
feature of the nonlinear excitation, as revealed in curves 3 to
19 of Part(B), is that the rise time dramatically increases as we
near the "top" of the profile (aA) in Fig. 4, i.e., when A-»A%*,

and when we reach the critical point, i.e., A= A*= 8.0, the rise
time virtually goes to infinity. This is to say that it will take
a considerably long time for one to excite the active mode to the
maximum steady-state value X*, even when optimal detuning is met
(A= A*), 1In Fig. 6, we display the excitation profiles for the
case of low damping in which transient excitations go well beyond
their steady-state values, resulting from oscillations due to

the detuning. Again, these curves show an increase in the rise

time as we approach the bistability transition point [see Part (C)].

V. Total Excitation - Role of the Isotopic Coupling Strength

A system of interacting isotopes, BAB # 0, is governed by
a set of coupled cubic equations which are not analytically solvable.
For tractable results, we shall investigate the low excitation

case, i.e., where anharmonicity is negligible, 29£,B<NA,E> ¢<rkwa/2,
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We shall further simplify the situation by assuming each active
mode A and B to be a two-level system with vibration-vibration
transfer strength D, where both upper levels are coupled to a
common bath with damping factors Ya and Yg* The dephasing factors
will be ignored. The total vibrational Hamiltonian of the coupled

two-level systems is
Hy=H+ b thy (19)

where Ho is the field-free Hamiltonian including the coupling of

the active modes, and HA gF 2are the laser interaction Hamiltonians.
’

The bath-induced damping factors have been absorbed in Ho, whose

matrix representation has the form

W -i%/2 T
A A 4
M=%
0 D a%-n;/&. . (20)

Diagonalization of Mo gives the eigenenergies

- - — 27%
£y =2 [ (E+E)2[(B-E)GE) el ],

(21.a)
- £ -
E;a“: L2 "k%\’/z ’ (21.b)
= A0
Er,z. X AB"° (21.c)

corresponding to the eigenvectors |+> and |->. These eigenvectors
are related to the basis set for the matrix of Eq.(20), with eigen-

energies E, ,, by # SinB Ceef 1)

(22.a)
> g -5 JLID], 2
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where 6 is given as
] -1 2'*1>
0‘_-;1'% (-;_’E;). (22.b)

We can separate the real and imaginary parts of E1 by writing

E, = (£+d8)-i(G+ 674

P
(23.a)

£ =(£-de)-i ([,-dT)/2

(23.b)

where the coupling-induced energy shift 6E and level broadening &y
are given by

JE= (JReod+ £,-5) /2,

(24.a)
8T = (dRsind + 4, -B)/z,

(24.b)

d=4ton (RAR,),
| (24.c)

2 2V

R=(R+K )", (24.4d)

2
@g (;-4)2+(2tD)-'k(TA‘E)2/4, (24.e)
R, = *(3;'3;)(6‘5;). (24.£)

As shown schematically in Fig. 7, E_ and E_ are blue- and red-

shifted, respectively, with respect to the 0ld state energies E, |
and Ey- Furthermore, the lower and upper levels are narrowed and
broadened, respectively, by §y. It is interesting to note that

this broadening (narrowing) effect is found only when the initial

level widths are unequal, i.e., YA# Yg*
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We now expand the wavefunction of the total Hamiltonian H3

in the complete set {|0>, }+>, |->},
WS = C, 105+ C.I-> + G, I+ -

where the coefficient amplitudes Cn(t), n=0,+,-, are time dependent
due to the time-dependent laser interaction Hamiltonians HAF(t)

and HBF(t). Substituting the above expansion into the time-
dependent Schr8dinger equation and employing the rotating-wave

approximation, we obtain the coupled equations of motion

2,,-6'; = VC p(-iat) + V G 4p(-i4t),

(26.a)
2:.C=VC wp(<4t)-:iTC | (26.b)
2 C;"'V C,(idt) -iCp (26.c)

where the new detunings and damping factors are given by

A: = (Et-an'A)/ﬁ and Yt=:YB,At6Y’ respectively. Here we have
ignored dephasing effects and assumed V =V_=V. Using time-
dependent perturbation theory with the initial conditions

Co(t)= C0(0)= 1, Ct(0)=:0, we obtain the transition probabilities

or population functions

2 E&)___/qwlz
| - _(VA) Ry .
AT+ () [’ torp (Gt)- 200 (4,000 );M)}

Although these correspond to the average excitations described in

(27)

the previous section, P_(t)# <NA(t)> and P_(t) # <NB(t)> since the
states |t> are mixtures of [1> and |2>. However, the total exci-

tation <Np>+ <N,> is identical to the total population P (t)+P_(t)

by energy conservation.
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To demonstrate the effects of the isotopic coupling strength,

D, on the total excitation, we consider the steady-state case

N = X +Y-= (P++P_)t_m, which is found to be
_ _(VA) (va)
toar+ma) o o+ (a)

The above expression is simbly a superposition of two Lorentzians

(28)

which are now decoupled in the new basis. The effects of D on the
total excitation are embedded in the new detunings 4, and the new
level broadenings (or damping factors) y,. We note that the above

total excitation, proportional to the absorption intensity of the

adspecies, may be used in aline-shape fitting procedure. However, an

actual adspecies spectrum may be further broadened by, e.g., collisional
dephasing which is coverage-dependent and/or shifted compared to that of
Eq. (28) , where only the Tl(energy) broadening and the isotope coupling
induced line-shift are included. We suggest that a coverage- or pressure-
dependent measurement of the low intensity absorption spectrum would be

a good test of the above diagonalization procedure of a two-level physical

system.

The effects of the coupling strength and the frequency dif-
ference of the isotopes on the steady-state excitation are shown
in Fig. 8. It is seen that the peaks of the profiles, located

at the uncoupled active-mode frequencies w, and w are shifted

A B’
apart for D# 0 [see Part (A)]. Moreover, the total excitation

profiles are governed by the frequency difference, w, - w and

A B’
the damping factors Ya.B* For a small damping factor we expect
’
a high excitation [compare Parts (B) and (C)], and for a small
frequency difference we expect a strong interference [compare

Parts (C) and (D)]. This red (blue) shift and narrowing (broaden-

ing) features can be more easily visualized by the expression of

a
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the total excitation [Eq.(28)], defined in the new basis |+> with
two decoupled Lorentzians, than in the old basis {]|1>,|2>} where

N, is given by a complicated expression in terms of D, and

+
3
A,B’

Ya,B

VI. Isotopic Selectivity

In this section we shall investigate the effects of the iso-
topic coupling strength, the frequency difference and the anhar-
monicity on the selectivity of isotope separation. Some tractable
results for the harmonic case (e*=0) will be analyzed, and then
numerical results for more general cases with €*,D#0 will be
shown graphically. Isotopic selectivity may be visualized in a
simple way through the steady-state excitation difference N_z X-Y,
where X and Y are the steady-state excitations of the active mode
A and B, respectively, which are found from Eq.(12), for e* _=0,

A,B

=Y = A= B= = =
VA-VB-V, Y1 Y2 Y1 and FA-FB I', to be

N = Vzl"’.Q_(.Q;ZJ?)/fIH; (2+2)1, (29.a)
Z, = 8085~ D= (r/2),

(29.b)
: Z,=02 /2
i 2 ’ |
- (29.c)
1
2 = i
&3 ‘Q:t As AA )
* (29.4d) |
i
' where AA B is the detuning and D= BAB is the mean isotopic coupling
’
strength.3
The above formulas display some important features of laser-
stimulated isotope separation: (i) the isotopic selectivity, governed
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by the difference excitation N_, increases when the coupling
strength, D, decreases; (ii) for very strong coupling with D= D*
=Q+/2, there is zero selectivity, i.e., N_=0. These coupling-
induced interference effects that "smear out" the selectivity of
an isotope mixture, which is highly separable if it is weakly
coupled, may be visualized more easily by rewriting Eq.(l12.a) as

i-ii = ((:ﬁ;;— 60:)/\ + V& /2 R

(30)

where the effects of the coupling strength are absorbed in the
complex effective frequency szf = wsz + DB/A. This frequency
reflects the fact that the coupling term DB/A plays a "frequency-
resonance” role in the selective excitation processes, i.e., a
strong coupling strength between the isotopic species may reduce
the selectivity by "promoting" the isotopic species to a virtually
equal frequency level. Moreover, for D> Q+/2, N_ may even reverse
its sign so that X< Y. 1In the zeroth-order solutions of the equa-
tions of motion, i.e., with D=0 in Eq.(12), the active modes of
the isotopes are isolated from each other and are independently
excited. In this situation, the isotopic selectivity is charac-
terized by their frequency difference, resulting in different
absorption cross sections given by
_ (Ueha) (Gas/ape)
AB (CO:’;-'CO)Z*' (rA:‘ /2)2 (31)

To demonstrate the effects of the coupling strength on both

the dynamics and the steady-state excitations, we plot the numer-

ical solutions of Eqg.(12) for the harmonic case (ei B~ 0) in
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Fig. 9. It is seen that <NA> is higher than <NB> for AA< AB

with D=0 [Part(A)]. As D increases, both excitations decrease

[Part(B)]. Increasing further the coupling strength to the transi-

tion value, i.e., D= D*, we see that the steady-state excitations

become identical, as expected from Eq.(29). However, the transient

excitations at this point are not identical [Part(C)]. For large
coupling strength, D >D*, both excitations are low and <NB> is
higher than <N,>, as expected from Eg.(29) where N_< 0 [Part(D)].

In Fig. 10, we include the anharmonicity (eK’B# 0) and plot
numerical solutions of Eq.(12). Here the increase of D does not
necessarily result in the decrease of <NA> due to the nonlinear
behavior of the excitation and the fact that the D induces a fre-
quency shift as seen in the previous section. There turns out to
be an optimal set of values (D,e*) which yield a maximum excita-
tion. For the case shown in Fig. 10 with (eA,Yl,Yz,V A A ) =
(L,,2,2,10,8.3,5), D= 2.9 is the optimal strength [compare Parts
(C) and (D)].

A more realistic investigation of the isotopic selectivity

should account for the laser pulse duration, t and for this

p’
purpose we can deflne the isotopic selectivity S by
Ww/m © | (N AL
S(tf)= S [ ]< A > 5 (32)
So [we /o] (N4t

where W (t) is the instantaneous probability rate of transition

A,B
from <NA B(t)> to the energy range from wnich dissociation (or
r
desorption) takes place,and m A B is the initial concentration of

the isotopes. For low dissociation (or desorption) yields, m, glt)
’

ik
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can be taken as constant. By further assuming mean transition
rates WA B independent of time, we can define a reduced selectivity
14

S = [WBmA/ (WAmB) ]S by
- " t
Sip= J' (N)at 5 (Ngoryat (33)
0 0

Solving Eq.(12) numerically, we plot the time evolution of the
reduced selectivity in F:ig. 11 for some cases of D=0 and Fig. 12
for D#0. From Fig.1ll , we see the following features: (i) for
the harmonic case, with ¢* _ =0, S=1 for A, = |A_|, since the exci-
A,B A B
tations are symmetric with respect to the Ay p=0 axis [Part(E)];
4
(1ii) for e*

A,
to that of Part(E), due to the nonlinear feature of the excitation

B# 0, a higher selectivity is shown in Part(B) compared

[see the profile (A) in Fig. 4] (iii) the nonlinear anharmonic effects
on the selectivity are further shown in Part(Aa), (C) and (D).
Depending on the on the portion of the profile (A) in Fig. 4,
the effects of the frequency difference, AB - AA' on the isotope
selectivity could be significantly enhanced [compare Part(A) and
(D), where in both cases IAB- AAI =5].

Fig. 12 reveals the following features: (i) Part(E) shows
the effects of D on the selectivity for the case of EX,B’-' 0 at
D=D*= (4,+4,)/2, where S=1 at steady-state as expected from Eq. (29);
(ii) for ei,B# 0, D* is "blue-shifted" toward §=1 [Part(F)];
(iii) an increase in D shows a decrease in S [Parts(A) to (G)1],
and § <1 when D >D*, corresponding to the situation of <NA> < <NB>
[see Part(D) of Fig.9].

Based on the results displayed in Figs.(1l) and (12), we con-

clude that: (i) for low excitation (e;‘ g% 0) and weak isotopic
’
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coupling (D= 0), the optimal condition for high selectivity is
that the laser frequency should be tuned such that AA: 0 and
AB> 0 in order to separate say, A, from B; (ii) for high excita-
tions, anharmonic effects play an important role, with an optimal
detuning 4, = A%= 2¢*X which may be further ‘red-shifted" due to
the effects of the isotopic coupling strength D. We finally note

that the parameters - deuxﬁngs(AA B), frequency difference (wB- ),
14

“a

coupling strength (D) and the laser pumping constant (VA B) ranging
14

from 1 to 10 - were chosen to explore the role of anharmonicity

and isotopic coupling strength for an unspecified system. However,

one should be able to treat a specific system by identifying these

parameters with actual physical quantities.
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VII. Effects of Energy Feedback from the Heated Substrate

As mentioned in Section II, for infrared excitation, direct
vibrational excitations of low-frequency substrate phonon modes
are negligible due to large detunings. Direct electronic excita-
tions of the substrate are also negligible in the present model.
For example, for a semiconductor with a band gap energy of ~10,000
cm—l, which is much larger than the CQ, infrared frequency of
~2,000 cm-l, the absorption coefficient is very small. However,
indirect heating of the substrate via multiphonon coupling may pro-
vide a source of energy feedback which causes thermal-phonon-
activated excitation of the active mode.

In this Section, we shall investigate the energy feedback
effects on the excitation of the active mode by combining the
quantum excitation equation, Eq.(7), and a classical heat diffu-
sion equation to account for the rise of the substrate temperature.
To describe the energy transfer between the laser radiation and
the system with the subsequence of substrate heatiné, we shall use
the following coupled equations for the average excitation of the

active mode 0&) and of the effective bath mode (Nz):

dN
e - % - Y(N-N), (34)
dN2
e = V+ [DVN] + Y(Nl-NZ) . (35)

In Eq.(34), the first term is the total pumping rate with absorption
cross section o, laser intensity I and frequency w. The second term

describes the energy relaxation of the active mode with a multiphonon




-28~-

relaxation rate y; the energy feedback effect is governed by the
difference of the active-mode and bath-mode excitations N1~N2.
The time-dependent excitation of the bath mode Nét)provides the

phonon-activated excitation of the active mode. Eq.(35) is simply

an energy diffusion equation for the substrate with diffusivity D,
with the gradient operator V defined in the direction of the energy
flow of the bath mode.

- We note that, without the diffusion term, Eq.(34) may be

# readily derived from Eqg.(7) with N, = NA + NB and replacing the
steady-state excitation HE by a time-dependent bath-mode excita-

tion Nz(t). As we shall see, Eq.(7) represents the diffusion

limit of Egs.(34) and (35).

In general, the above coupled equations can only be solved
numerically since o is excitation dependent [see Egqg.(31)], D is
temperature dependent and I is time dependent, e.g., a gaussian
pulse I(t) = Ioexp[-lt/tp)zl. For simplicity, however, we con-
sider a square pulse excitation in the adiabatic limit with a
small diffusion length, vDt, and also in the diffusion limit with
a large diffusion length of the heated substrate. Moreover, we
shall consider the optimal excitation, i.e., the absorption cross
section, o, to be independent of the excitation in order to elimi-
nate the nonlinear coupling in Eq.(34).

In the adiabatic limit, which is a situation of a local heat-
ing (via multiphonon coupling) of the substrate surface with a
small diffusion length, we may neglect the diffusion term in

Eq.(35). The coupled equations can then be solved analytically
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to give the reduced excitations (in units of the total excitation,
Iotpo/hm) for the active mode (Nl*) and the bath mode (Nz*):
Nl*(t) = [t+f(t)]/2tp (36.a)

Nz*(t)= [t~£(t) ]/2tp (36 .b)

for 0<t< tp, and

Ny *(t) [tp+f(tp)exp(-2yt)]/2tp (36.c)

* - -
Ny*(t) = [£-f(t )exp(-2vt) 1/2¢, (36.4)

for tz_tp, where £(t) = [l-exp(-2Yt)]1/(2y), and tp is the duration
of a square pulse laser with intensity IO'

On the other hand, in the diffusion limit, the bath-mode
energy rapidly diffuses into the bulk of the substrate which be-
haves like an infinite heat sink. In this case the rise of the
substrate surface temperature is not significant, and no energy

feedback will be found. The reduced excitations of the active

mode may then be well-approximated by

'Nl*(t) = (1+N0*)[l—exp(-Yt)] : (37.a)

for 0 < t < tp, and

Ny *(t) = No*[l-exp(-yt)] + [exp(ytp)-l]exp(-yt) (37.b)

for t > t,, where N,* is the steady-state value.

P
The time evolution of the reduced excitations is shown in

Fig. 13 for the adiabatic and diffusion limit. It is seen that

RS- s




in the adiabatic limit the active mode has a higher excitation
than in the diffusion limit, and both Nl* and Nz* reach a "quasi"
steady-state value of 0.5, for t » 5 tp. We note that long time
behavior of both Nl* and N2* is characterized by the diffusion
processes even for the small diffusion length case, and in the
region of t>> tp the excitationswill exponentially decay to the
steady-state value No*. We also see from Fig. 13 that the active-
mode excitation N;*(t) for the diffusion limit is upshifted to
that of the adiabatic limit via the energy feedback provided by
the bath-mode excitation, NZ*(t), which characterizes the local
heating of the substrate surface.

The nonequilibrium transient excitations may be viewed in
terms of the effective vibrational temperatures which are related

to the excitation energy by5’9

Eiﬁwl Nlﬁw, (38.a)

nz'hw2 Néﬁw. (38.b)

51 and Hz are the average occupation numbers for the active mode

and bath mode, respectively, given by the Bose-Einstein distribution

m) ,(t) = [exp(ﬁwl’z/k'rifg) -1171, (39)

where wy and w, are the mean frequency of the active and bath mode,

respectively, and the transient effective temperatures Tiff and
Tgff are for the active and bath mode, respectively. By this
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concept of transient temperatures, which are governed by the

P ——r

transient excitations, one may selectively excite the active mode
in terms of a high pumping rate for a system with a slow relaxa-

tion rate and a small diffusion length. 1In the transient region,

SR aagiic o )

as shown in Fig. 13, the excitations Nl*(t)> Nz*(t) give us a
higher transient effective temperature of the active mode com-
pared to that of the bath mode, i.e., Tiff> Tgff.

As discussed in the previous Section, the isotope selectivity
3 characterized mainly by the absorption cross sections of the
isotope [Eq.(31)] is strongly frequency dependent due to coherent
laser excitation. The incoherent thermal excitations of the active
modes due to the energy feedback of the heated substrate, which is
3 frequency independent, would smear out part of the isotope selec-
tivity, which is governed by the ratio NA/NB’ although the energy
feedback causes a higher total excitation N, = NA + NB' We finally

propose that for the improvement of the laser-stimulated isotopic

separation, one may minimize the energy feedback effects by using

an initially cold substrate or using high diffisivity materials

to reduce the local surface heating.

VIE. Conclusion

In the present paper, the nonlinear effects of laser-excited
anharmonic interacting isotopes and the effects of the isotopic
coupling strength, the energy (Tl) and phase (Tz) relaxation rates
and the frequency difference on the average excitations are theo-
retically investigated. The important features are summarized as
follows:

(i) The average excitations of interacting isotopes are
governed by a set of coupled equations [Eg.(7)], where the anhar-
monic quantum oscillators coupled to the bath modes are described

ArB hich is complex and time dependent

by the effective frequency Weff
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due to the anharmonic correction 2¢¥* (t)> and the overall

2,8°Na,s
. _ JA/B A,B.
level width FA,B Y1 + Y,
(ii) The time-dependent average excitation is given by a

complicated expression [Eq.(13)] which reduces to a simple Lorentzian
for the case of y2=D= 0.

(iii) PFor high excitation, the anharmonic correction is sig-
nificant, and the steady-state excitation is governed by a cubic
equation with a "bistability" and a red-shifted optimal detuning
[Egq.(16)]. The rise time of the nonlinear excitation dramatically
increases as the "trajectory" approaches the optimal value A*
[Figs. 5 and 6].

(iv) The adspecies spectrum associated with the total steady-
state excitation and characterized by the coupling strength,
the frequency difference and the level widths of the isotopes
is found to be a superposition of two Lorentzians which are com-
pletely decoupled by a diagonaliéation procedure [Eqg. (28)].

(v) The steady-state excitation difference N_, for a low
excitation with EX,B= 0, is characterized by a critical coupling
strength D*==Q+/2 [Eq.(29)]. For a high excitation but with weak
coupling, si'Biio, Dz 0, the isotopic selectivity depends on the
absorption cross sections of the isotopes in which the frequency
wzég plays the essential role [Eg.(31)]. For a strong coupling
case, D> 0, the reduced selectivity is found numerically (Eg.(33)].
The results shown in Figs. 11 and 12 suggest that high isotopic
selectivity may be achieved by tuning the laser frequency to an

optimal value which is red-shifted with respect to that of the

noninteracting case, i.e., D=0, given by A*= 2e*X,
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j Figure Captions

Figure 1. Schematic diagrams of the density of states and the

interactions among the A, B and C modes described by

T ey

the Hamiltonians Hl(A) and HZ(B)'

ey

Ty

Figure 2. Excitation profiles in (Y?,t,<NA>) space for
(AA,VA) = (5,5) and the ratio Y%/Y? = (A)O0, (B)1,
(C)3, and (D)10. Parts(E) and (F) represent
different viewing angles of Parts(A) and (D), respec-
tively, and show the effects of the dephasing factor
Yg on the transient excitations. The values of the
points P, and B are (0.05,0,0) and (4.25,6,x1), respec-

tively, where xl is the steady-state excitation.

Figure 3. Time evolution of the average excitation for
(EX,VA'AA) = (0,10,5) and(Y?:Yg) = (A) (2,0), (B)(1,1)

and (C) (0.2,1.8). Note that Y? + Yg remains constant.

Figure 4. Anharmonic steady-state excitations showing the
bistability feature for (Yl.Yz.V ) = (4,4,10) and

(A) at the critical value of e* = g** 1.28 and

(B) above the critical value, e* = 2.56 > ¢**, The
bistable points are shown by P,Q,R and S. The harmonic

steady-state excitation (dotted curve) is a Lorentzian.




Figure 5.

Figure 6.

Figure 7.

Time evolution of the average excitation for high

damping cases, y, = y, = 4 and V = 10. 1In Part(Ad),

(e*,A) = (0,0), (e**,7.9), (e**,A*), (e**,8.1),

(e¢**,-5) and (0,7.9) for curves 1,2,3,4,5 and 6,

respectively. In Part(B), e* = g¥** A 7.8 (curve 1),
7.9 (curve 2) and A = 7.968 + 0.002n, n = 1,15 for
curves 3 to 17, respectively, A = 7.999 (curve 18),

A = 7.9995 (curve 19), A = A* (curve 20), A = 10
(curve 21) and A = 12 (curve 22). Note that (e**,6A¥)

= (1.28,8.0) are the optimal values which give a

maximal steady-state excitation X" = 3.125.

Time evolution of the average excitation for a case

of low damping with y; = v, = 2, V = 10 and e* = 1.

In Part(A), the detuning A = -5,0,5,8.3,8.4 and 10
for curves 1 to 6, respectively. In Part(B), A = 8.7
(curve 1), 8.72 (curve 2), A = 8.738 + 0.02n, n = 1,4

for curves 3 to 7, respectively, and A = 8.749 (curve 8).

Schematic energy diagram for the interacting active
modes with energies E, and Ez, respectively, coupled to
each other by D and excited by the pumping rate V.

The coupled basis {]1>,]2>} is transformed to a new
basis {|+>,|->} where the energy is red(blue) shifted

by S8E and broadened (narrowed) by dy.

IO
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Figure 8. Total excitation profiles in (N_,w D) space for

A,B
e* = 0, y’z"B =0, V=10 and (ug=wysYpr7g) = (A)(15,5,5),

(B) (15,7,3), (C)(15,3,7) and (D) (5,3,7).

Figure 9. Time-dependent excitations, (t)>, of the active

“Na,B
modes for the harmonic case, i.e., €* = 0 with
(V,Y:AA:AB) = (10,1,4,8) and D = (A)O, (B)2, (C)D*
and (D)10. D* = (AA+AB)/2 = 6 is the transition value

where N_= 0.

Pigure 10. Time evolution of <Np> for the anharmonic case with g* =1,

(V,Y,AA,AB) = (10,2,8.3,5) and D = (A)O0, (B)1l, (C)2.9

and (D) 2.95.

Figure 1ll. Time evolution of the reduced selectivity (Eq.(33)]

for some cases of D = 0: (y?’B,Yg’B,V) = (4,4,10) and

(e*,8,,85) = (A)(1.28,5,10), (B) (1.28,5,-5), (C)(0,5,10),

(D) (1.28,5,0) and (E)(0,5,-5).

Figure 12. Same as Fig. 11l but for the cases of D = 0 and D#0
A

?,B'YZ,B

D = (A)O, (B)2, (C)4, (D)6, (F)D* and (G)10. Part(E)

with (e*,v ,AA,AB,V) = (1.-8,4,4,5,10,10) and

shows the harmonic case (g*,D) = (0,D¥*), where

D* = (AA+AB)/2 is the transition value.
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Figure 13. Time evolution of the reduced excitations (in units
of Iotpo/hm) generated by a square pulse of intensity
I0 and width tp, for the active mode, Nl* (solid curve),
and the bath-mode, N2* (dashed curve) in the adiabatic
limit and for the active mode in the diffusion limit
(dotted curve). The total reduced excitation is shown
by the dashed-dotted line. Here a relaxation rate

A= 0.5/tp is used.
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